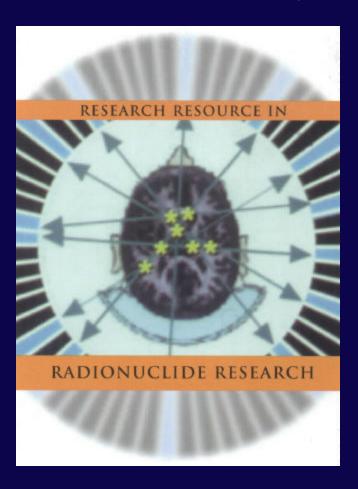
Isotope Supply 2002 - 2010 University Supply, Accelerator Model

Michael J. Welch, Ph.D.

Mallinckrodt Institute of Radiology Washington University School of Medicine


National Cancer Institute (1 R24CA86307)

Initial targetry developmental work done in collaboration with Newton Scientific Inc., (DOE, DE-FG02-97ER82442)

DOE Supporting Grants: DE-FG02-87ER60512 and DE-FG02-84ER60218

NCI Sponsored Research Resource (R24 CA86307)

- Objectives
 - Production and distribution of nonstandard isotopes
 - Service
 - Collaborative
 - Access to WU facilities
 - microPET
 - characteristics of nonstandard isotopes

A Research Resource in Radionuclide Research

- Characteristics of nuclides chosen for production
 - Determination of image quality
 - Determination of purity

Production

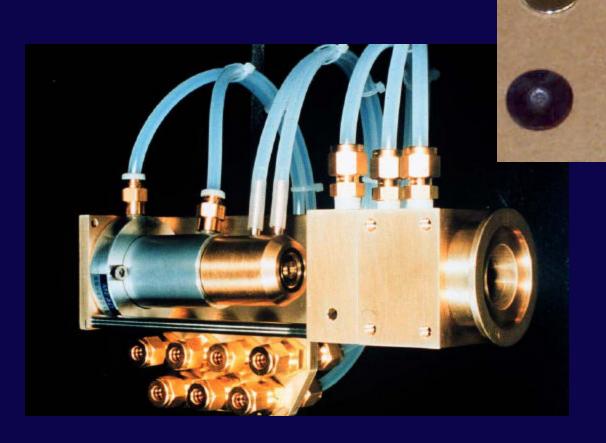
- Development of target systems
- Development of purification methods

Automation

- Development of automation to improve production quality
- To reduce personnel exposure

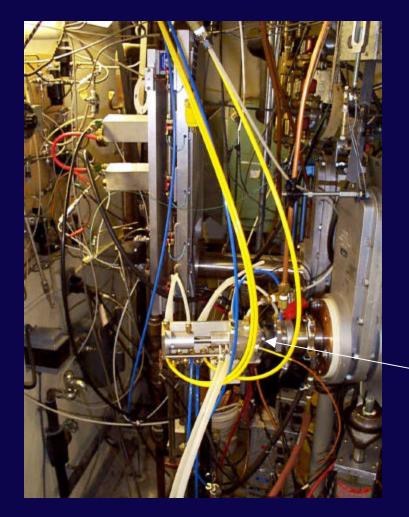
Nuclides Selected for Production

- Cu-60, Cu-61, Cu-64 wide range of t_{1/2}
 Cu-64 has the potential for diagnosis and therapy
- I-124, Br-76, Br-77 PET and therapeutic isotopes nuclides applicable to a wide range of compounds
- Tc-94m PET Tc-nuclide
- Ga-66 t_{1/2} between Ga-68 and Ga-67
- Y-86 potentially useful for dosimetry prior to Y-90 therapy

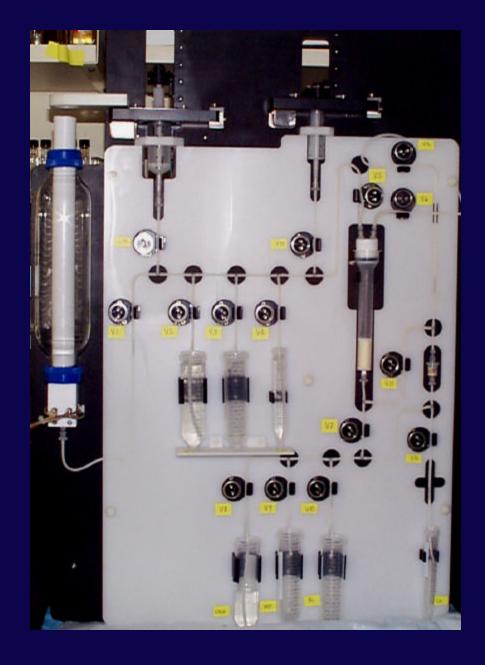


Characteristics of Nuclides Selected for Production

Isotope	Half-life	Decay modes/ %	Maximum β ⁺ energy (MeV)	Reaction	Natural abundance of target isotope
⁷⁶ Br	16.2 h	$\beta^+/57.0$	3.98	⁷⁶ Se(p,n)	9.1%
		EC/43.0			
⁷⁷ Br	2.4 d	$\beta^+/0.74$	0.36	77 Se(p,n)	7.6%
		EC/99.3			
^{124}I	4.18 d	$\beta^+/25.0$	2.15	$^{124}\text{Te}(p,n)$	4.8%
		EC/75.0			
⁸⁶ Y	14.74 h	$\beta^{+}/34.0$	3.15	⁸⁶ Sr(p,n)	9.9%
		EC/66.0			
^{94m} Tc	52.0 m	$\beta^+/72.0$	2.47	94 Mo(p,n)	9.3%
		EC/28.0			
⁶⁶ Ga	9.49 h	$\beta^{+}/56.5$	4.15	66 Zn(p,n)	27.8%
		EC/43.5			
⁶⁰ Cu	23.7 m	$\beta^{+}/93.0$	3.92	60 Ni(p,n)	26.1%
		EC/7.0			
⁶¹ Cu	3.32 h	$\beta^+/60.0$	1.22	61 Ni(p,n)	1.25%
		EC/7.0			
⁶⁴ Cu	12.7 h	β +/19.0	0.66	64 Ni(p,n)	1.16%
		EC/43.0			
		β-/38			



Targetry



CS-15 Cyclotron and Target Stations

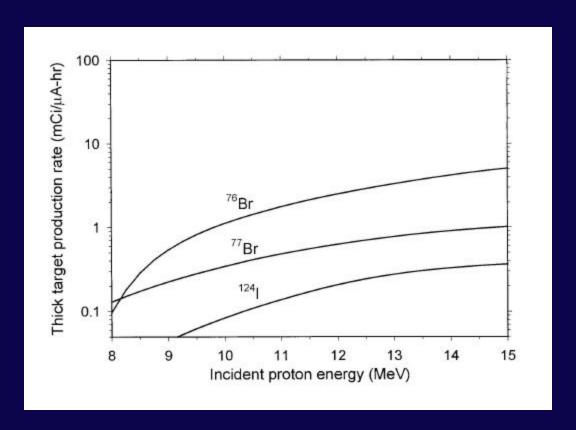
Automated processing system for Cu isotopes

Cu-64 Production

year	mCi of Cu-64	# productions
1995	2519	14
1996	4242	29
1997	5626	37
1998	7924	41
1999	10375	35
2000	11867	51
2001	12003	48
2002 (feb)	2121	6
Total	56677	256

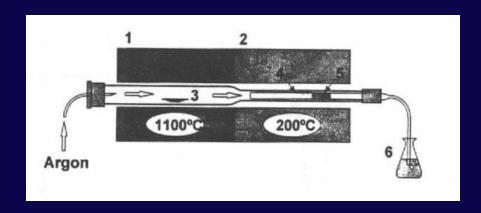
Production of Cu-60 and Cu-61

	2000		2001		Total	
	# productions	mCi	# productions	mCi	productions (since 1996)	mCi
Cu-60	35	5094	32	4386	121	34466
Cu-61	6	1051	2	443	26	3172



Bromine & Iodine Isotopes for Imaging and Therapy

⁷⁶ Br 16.2 hr	57% β+ (18 mm positron range) 43% EC	3.98 MeV
	0.68 Auger e ⁻ /decay	
⁷⁷ Br	0.74% β+ (0.2 mm positron range)	0.36 MeV
2.4 d	99.3% EC	
	0.85 Conversion e ⁻ /decay	
$^{124}\mathrm{I}$	25% β+ (10 mm positron range)	2.14 MeV
4.2 d	75% EC	
	0.713 Auger e ⁻ /decay	


Thick Target Production Yields

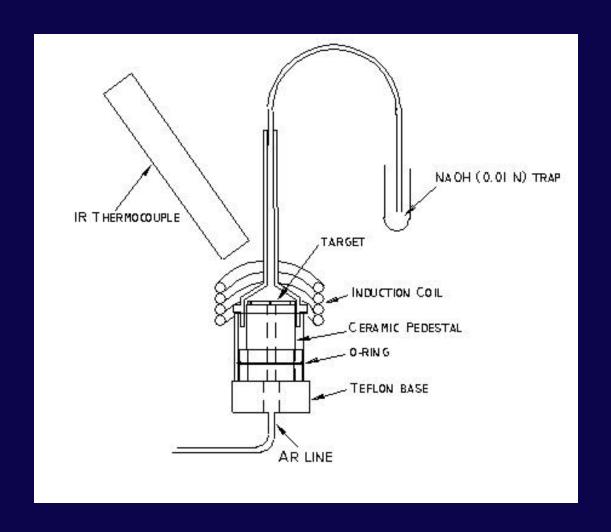
Calculated from published cross-sections and using SRIM-96 (for proton stopping power in target material)

Removal of Radioactivity from Target

Dry distillation technique

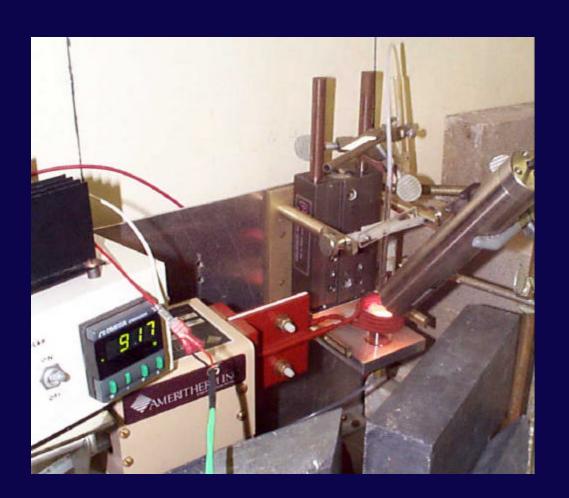
Tolmachev et al. Appl. Rad. Isot. 49, 1537-1540 (1998)

Preparation of Cu₂⁷⁶Se, Cu₂⁷⁷Se & Cu₂¹²⁴Te

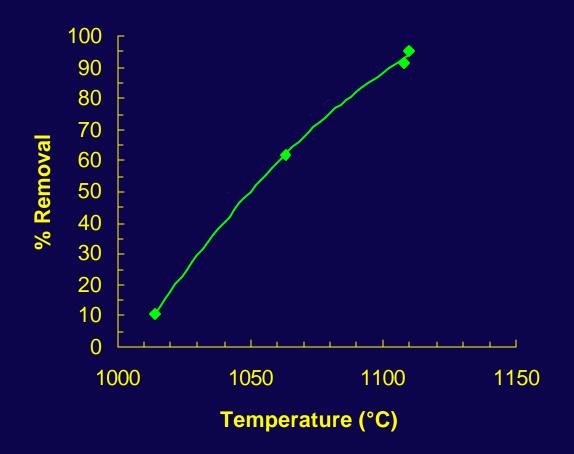


Combined stoichiometric amounts of copper and enriched selenium (or tellurium) in an evacuated quartz ampoule. Heated at 400-500 C for 6-10 days.

50-60 mg then placed into target depression, pressed and melted.



Washington University Induction Furnace Set-up



Induction Furnace Set-up

Recovery as a Function of Temperature

⁷⁶Br Activity removal in 10 min distillation - Pt Disk

Halogen Targetry - Production Yields

Isotope	Production Y	Thickness	
	Measured	Predicted	(mg/cm ²)
Br-76	2.4	2.5	160
Br-77	0.89	0.94	221
I-124*	0.25	0.26	203

^{*} beam degraded (to 12.5 MeV) by aluminum foil (0.44mm)

Shipping

- 12/97 to present: 427 shipments, 257 Limited Quantity (2.4 mCi) and 170 standard (up to 100 mCi). Total activity shipped 6646 mCi
- Activity shipped since RR: 378 shipments, 222 Limited Quantity, 156 standard. Total activity shipped is 5747 mCi.
- Shipped to 19 institutions.
- Inter-institutional contract required for greater than Limited Quantity amounts (10 institutions).
- DOT trained personnel for packaging and shipping (FEDEX).
- Obtained DOT approved packaging material.
- Have shipped limited quantities of ⁷⁶Br.

Shipping (projects)

- Purdue, Mark Green ⁶⁴Cu-labeled folate chelate conjugates. Imaging and therapy of folate receptor positive ovarian carcinomas.
- USDA, Philip Reeves Effect of dietary Zinc levels on the absorption of Cu. Uptake, transport and mechanism.
- U of Michigan, Dennis Thiele Structural and functional analysis of eukaryotic copper transporters.
- UAB, Buck Rogers ⁶⁴Cu-labeled bombesin analogue for imaging tumors with gastrin releasing peptide receptors (GRPr).
- CSU, Fullerton, Maria Linder (1) Delivery of copper to mammary gland and milk and the effects of lactation in rats. (2) Evaluation of Cu binding affinity of rat and human serum macroglobulins.
- Harvard, Alan Packard Functional imaging of MDR with PET

Shipping (projects)

- Harvard, Eva Barbarics/Alun Jones- ⁶⁴Cu-labeled isonitrile complexes with varying lipophilic character to enhance the tumor-cell accumulation in chemotherapeutically sensitive and resistant human breast-tumor-cell cultures.
- Temple University, Linda Knight Evaluation of ⁶⁴Cu-labeled Bitistatin for targeting integrins in tumor angiogenesis with PET
- UCLA, Sam Gambhir Ex Vivo cell labeling with ⁶⁴Cu-PTSM for imaging cell trafficking in mice with PET
- COH/UCLA, Anna Wu, Sam Gambhir Copper-64-labeled engineered antibody fragments for PET imaging and therapy
- Fox Chase, Donald Chapman Preclinical evaluation of azomycincyclams as markers of tumor hypoxia and radioresistance

Washington University Collaborations

- Jonathan Gitlin Evaluation of the physiological role of copper in neurodegenerative disease
- Jim Wang In vivo imaging of experimental acute autoimmune uveitis. In vivo imaging of adoptive immunotherapy: the CMS5/DUC18

 Tumor ablation Model
- Eduardo Moros/Robert Myerson Effects of mild hyperthermia on the oxygenation of tumor tissue for the enhancement of tumor sensitivity
- Jason Lewis Evaluation of ⁶⁴Cu-ATSM for radiotherapy
- Carolyn Anderson Cu-64 labeled antibodies and peptides for therapy
- Steven Weintraub Role of bcl-x in tumor progression and tumor sensitivity to antineoplastic agents

Collaborations involving Tc-94m, Br-76, Br-77 and Ga-66

- Purdue, Mark Green Ga-66 Folate imaging
- Washington University, Yvette Sheline and Mark Mintun Br-76, I-124 agents to study neurogenesis
- Washington University, David Piwnica-Worms Tc-94m sestamibi for MDR
- University of Illinois, John Katzenellenbogen Tc-94m labeled Tricarbonyl organometallics. Br-76, Br-77 and I-124 labeled steroids for imaging and therapy of receptor-positive tumors of the breast and prostate.

Select Publications

Hamaza, I., Faisst, A., Prohaska, J., Chen, J., Gruss, P. and Gitlin, J.D.: The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proceedings of the National Academy of Sciences, 98(12): 6848, 2001.

Lewis, J.S., Laforest, R., Buettner, T.L., Song, S-K., Fujibayashi, Y., Connett, J.M. and Welch, M.J.: Copper-64-diacetyl-*bis*(N⁴-methylsemicarbazone): An agent for radiotherapy. Proceedings of the National Academy of Sciences, 98(3): 1206, 2001.

Wu, A.M., Yazaki, P.J., Tsai, S-W., Nguyen, K., Anderson, A-L., McCarthy, D.W., Welch, M.J., Shively, J.E., Williams, L.E., Raubitschek, A.A., Wong, J.Y.C., Toyokuni, T., Phelps, M.E. and Gambhir, S.S.: High-resolution microPET imaging of carcinoembryonic antigen (CEA)-positive xenografts using a copper-64 labeled engineered antibody fragment. Proceedings of the National Academy of Sciences, 97(15): 8495, 2000.

Select Publications (continued)

Adonai, N., Nguyen, K.N., Walsh, J., Iyer, M., Toyokuni, T., Phelps, M.E., *et al.* Ex vivo cell labeling with ⁶⁴Cu-pyruvaldehyde-bis (N⁴-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proceedings of the National Academy of Sciences 99(5):3030, 2002.

Wipke, B.T., Wang, Z., Kim, J., McCarthy, T.J. and Allen, P.M. Dynamic visualization of a joint-specific autoimmune response through positron emission tomography. Nature Immunology 366, 2002.

Lewis, J.S., Connett, J.M., Garbow, J.R., Buettner, T.L., Fujibayashi, Y., Fleshman, J.W. and Welch, M.J. Copper-64-pyruvaldehyde-bis(N⁴-methyl-thiosemicarbazone) for the prevention of tumor growth at wound sites following laparoscopic surgery: monitoring therapy response with microPET and magnetic resonance imaging. Cancer Research 62:445, 2002.

